Moving Average Eksponensial - EMA BREAKING DOWN Exponential Moving Average - EMA EMA 12 dan 26 hari adalah rata-rata jangka pendek yang paling populer, dan indikator tersebut digunakan untuk menciptakan indikator seperti moving average convergence divergence (MACD) dan harga osilator persentase (PPO). Secara umum, EMA 50 dan 200 hari digunakan sebagai sinyal tren jangka panjang. Pedagang yang menggunakan analisis teknis menemukan rata-rata bergerak sangat berguna dan berwawasan bila diterapkan dengan benar namun menimbulkan malapetaka jika digunakan dengan tidak semestinya atau disalahartikan. Semua rata-rata bergerak yang umum digunakan dalam analisis teknis adalah, pada dasarnya, indikator lagging. Akibatnya, kesimpulan yang diambil dari penerapan rata-rata bergerak ke bagan pasar tertentu adalah untuk mengkonfirmasi pergerakan pasar atau untuk menunjukkan kekuatannya. Sangat sering, pada saat garis indikator rata-rata bergerak membuat perubahan untuk mencerminkan pergerakan yang signifikan di pasar, titik optimal masuk pasar telah berlalu. EMA memang berfungsi untuk mengurangi dilema ini sampai batas tertentu. Karena perhitungan EMA menempatkan lebih banyak bobot pada data terbaru, ia memeluk tindakan harga sedikit lebih ketat dan karena itu bereaksi lebih cepat. Hal ini diinginkan bila EMA digunakan untuk mendapatkan sinyal masuk perdagangan. Menafsirkan EMA Seperti semua indikator rata-rata bergerak, tren ini jauh lebih sesuai untuk pasar tren. Bila pasar berada dalam uptrend yang kuat dan berkelanjutan. Garis indikator EMA juga akan menunjukkan tren naik dan sebaliknya untuk tren turun. Pedagang yang waspada tidak hanya memperhatikan arah garis EMA tapi juga hubungan tingkat perubahan dari satu bar ke bar berikutnya. Misalnya, karena aksi harga dari uptrend yang kuat mulai merata dan membalikkan, tingkat perubahan EMA dari satu batang ke bar berikutnya akan mulai berkurang sampai saat garis indikator rata dan tingkat perubahannya nol. Karena efek lagging, pada titik ini, atau bahkan beberapa bar sebelumnya, tindakan harga seharusnya sudah berbalik arah. Oleh karena itu, mengikuti bahwa penurunan yang konsisten secara konsisten dalam perubahan EMA dapat digunakan sebagai indikator yang dapat mengatasi dilema yang disebabkan oleh efek lagging moving averages. Kegunaan Umum EMA EMA biasanya digunakan bersamaan dengan indikator lain untuk mengkonfirmasi pergerakan pasar yang signifikan dan untuk mengukur validitasnya. Bagi pedagang yang berdagang intraday dan pasar yang bergerak cepat, EMA lebih bisa diterapkan. Cukup sering trader menggunakan EMA untuk menentukan bias trading. Misalnya, jika EMA pada grafik harian menunjukkan tren kenaikan yang kuat, strategi pedagang intraday mungkin hanya diperdagangkan dari sisi panjang pada grafik intraday. Model rata-rata dan eksponensial pemulusan eksponensial Sebagai langkah pertama dalam bergerak melampaui model mean, Model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasi dengan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat smoothing (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata - rata yang paling sederhana adalah. Simple Moving Average: Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk memperoleh kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia menggunakan banyak kuotimasi dalam Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang tampak lebih halus: Rata-rata pergerakan sederhana 5 langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata bergerak sederhana 9-istilah, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, rata-rata usia meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata pergerakan 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam prakiraan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, ketika 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linear konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi smoothing eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Bisa diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi paling baik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, perataan eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi naluriah kuotriotipnya. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Hal ini dimungkinkan untuk menghitung interval kepercayaan sekitar perkiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke atas halaman.) Exponential Smoothing Dijelaskan. Salin Hak Cipta Konten pada InventoryOps dilindungi hak cipta dan tidak tersedia untuk republikasi. Ketika orang pertama kali menemukan istilah Exponential Smoothing, mereka mungkin berpikir itu terdengar seperti neraka yang banyak merapikan. Apapun itu smoothing. Mereka kemudian mulai membayangkan perhitungan matematika yang rumit yang mungkin memerlukan gelar dalam matematika untuk memahami, dan berharap ada fungsi Excel bawaan yang tersedia jika mereka perlu melakukannya. Realitas pemulusan eksponensial jauh kurang dramatis dan jauh kurang traumatis. Yang benar adalah, eksponensial smoothing adalah perhitungan yang sangat sederhana yang menyelesaikan tugas yang agak sederhana. Ini hanya memiliki nama yang rumit karena secara teknis hal tersebut terjadi akibat perhitungan sederhana ini sebenarnya sedikit rumit. Untuk memahami pemulusan eksponensial, ada baiknya memulai dengan konsep umum perataan dan beberapa metode umum lainnya yang digunakan untuk mencapai perataan. Smoothing Smoothing adalah proses statistik yang sangat umum. Sebenarnya, kami secara teratur menemukan data merapikan dalam berbagai bentuk dalam kehidupan sehari-hari. Setiap kali Anda menggunakan rata-rata untuk menggambarkan sesuatu, Anda menggunakan nomor yang merapikan. Jika Anda memikirkan mengapa Anda menggunakan rata-rata untuk menggambarkan sesuatu, Anda akan segera memahami konsep perataan. Sebagai contoh, kita hanya mengalami musim dingin terpanas yang tercatat. Bagaimana kita bisa menghitung ini. Kita mulai dengan dataset suhu tinggi dan rendah harian untuk periode yang kita sebut Winter untuk setiap tahun dalam sejarah yang tercatat. Tapi itu membuat kita dengan seikat angka yang melompati sedikit (tidak seperti setiap hari musim dingin ini lebih hangat daripada hari-hari yang sama dari tahun-tahun sebelumnya). Kita membutuhkan nomor yang menghilangkan semua ini yang melompat dari data sehingga kita bisa lebih mudah membandingkan satu musim dingin ke musim berikutnya. Melepaskan lompatan di sekitar data disebut smoothing, dan dalam kasus ini kita bisa menggunakan rata-rata sederhana untuk menyelesaikan smoothing. Dalam peramalan permintaan, kita menggunakan smoothing untuk menghilangkan variasi acak (noise) dari permintaan historis kita. Hal ini memungkinkan kita untuk lebih mengidentifikasi pola permintaan (terutama tren dan musiman) dan tingkat permintaan yang dapat digunakan untuk memperkirakan permintaan masa depan. Kebisingan yang diminta adalah konsep yang sama dengan data suhu harian yang melompati. Tidak mengherankan, cara yang paling umum orang menghilangkan kebisingan dari sejarah permintaan adalah dengan menggunakan rata-rata sederhana lebih khusus, rata-rata bergerak. Rata-rata bergerak hanya menggunakan sejumlah periode yang telah ditentukan untuk menghitung rata-rata, dan periode tersebut bergerak seiring berjalannya waktu. Misalnya, jika Im menggunakan moving average 4 bulan, dan hari ini tanggal 1 Mei Im menggunakan rata-rata permintaan yang terjadi pada bulan Januari, Februari, Maret, dan April. Pada tanggal 1 Juni, saya akan menggunakan permintaan dari bulan Februari, Maret, April, dan Mei. Rata-rata bergerak tertimbang. Bila menggunakan rata-rata, kami menerapkan kepentingan (bobot) yang sama untuk setiap nilai dalam dataset. Dalam rata-rata pergerakan 4 bulan, setiap bulan mewakili 25 dari rata-rata bergerak. Bila menggunakan sejarah permintaan untuk memproyeksikan permintaan masa depan (dan terutama tren masa depan), logis untuk sampai pada kesimpulan bahwa Anda ingin sejarah yang lebih baru memiliki dampak lebih besar pada perkiraan Anda. Kita dapat menyesuaikan perhitungan rata-rata bergerak kita untuk menerapkan berbagai bobot pada setiap periode untuk mendapatkan hasil yang diinginkan. Kami mengungkapkan bobot ini sebagai persentase, dan total semua bobot untuk semua periode harus bertambah hingga 100. Oleh karena itu, jika kita memutuskan bahwa kita ingin menerapkan 35 sebagai bobot untuk periode terdekat dalam rata-rata pergerakan tertimbang 4 bulan kita, kita dapat Kurangi 35 dari 100 untuk menemukan bahwa kita memiliki sisa 65 untuk membagi selama 3 periode lainnya. Misalnya, kita bisa berakhir dengan bobot masing-masing 15, 20, 30, dan 35 selama 4 bulan (15 20 30 35 100). Pemulusan eksponensial Jika kita kembali pada konsep penerapan bobot sampai periode terakhir (seperti 35 pada contoh sebelumnya) dan menyebarkan bobot yang tersisa (dihitung dengan mengurangkan berat periode terakhir 35 dari 100 menjadi 65), kita memiliki Blok bangunan dasar untuk perhitungan smoothing eksponensial kami. Pengendalian masukan perhitungan smoothing eksponensial dikenal sebagai faktor pemulusan (juga disebut konstanta pemulusan). Ini pada dasarnya mewakili bobot yang diterapkan pada periode permintaan terakhir. Jadi, di mana kita menggunakan 35 sebagai pembobotan untuk periode terbaru dalam perhitungan rata-rata bergerak tertimbang, kita juga dapat memilih untuk menggunakan 35 sebagai faktor penghalusan dalam perhitungan perataan eksponensial untuk mendapatkan efek yang serupa. Perbedaan dengan perhitungan smoothing eksponensial adalah bahwa alih-alih kita juga harus mengetahui berapa banyak bobot yang harus diterapkan pada setiap periode sebelumnya, faktor pemulusan digunakan untuk melakukannya secara otomatis. Jadi inilah bagian eksponensialnya. Jika kita menggunakan 35 sebagai faktor penghalusan, bobot periode permintaan terakhir akan menjadi 35. Bobot periode permintaan terakhir berikutnya (periode sebelum yang paling baru) akan menjadi 65 dari 35 (65 berasal dari pengurangan 35 dari 100). Ini setara dengan 22,75 bobot untuk periode itu jika Anda melakukan matematika. Permintaan periode paling akhir berikutnya adalah 65 dari 65 dari 35, yang setara dengan 14,79. Periode sebelum itu akan tertimbang 65 dari 65 65 dari 35, yang setara dengan 9,61, dan seterusnya. Dan ini berlanjut kembali sepanjang periode sebelumnya sampai kembali ke awal waktu (atau titik di mana Anda mulai menggunakan smoothing eksponensial untuk item tertentu). Anda mungkin berpikir itu terlihat seperti keseluruhan matematika. Tapi keindahan perhitungan smoothing eksponensial adalah bahwa daripada harus menghitung ulang terhadap setiap periode sebelumnya setiap kali Anda mendapatkan permintaan periode baru, Anda cukup menggunakan keluaran penghitungan eksponensial dari periode sebelumnya untuk mewakili semua periode sebelumnya. Apakah Anda bingung ini akan lebih masuk akal saat kita melihat perhitungan sebenarnya Biasanya kita mengacu pada output perhitungan smoothing eksponensial seperti ramalan periode berikutnya. Pada kenyataannya, perkiraan akhir memerlukan sedikit kerja lebih banyak, namun untuk keperluan perhitungan khusus ini, kami akan menyebutnya sebagai ramalan. Perhitungan smoothing eksponensial adalah sebagai berikut: Periode permintaan terakhir dikalikan dengan faktor penghalusan. PLUS Prakiraan periode terbaru dikalikan dengan (satu minus faktor pemulusan). D periode terakhir meminta S faktor penghalusan diwakili dalam bentuk desimal (jadi 35 akan ditunjukkan sebagai 0,35). F perkiraan periode terbaru (output dari penghitungan smoothing dari periode sebelumnya). ATAU (dengan mengasumsikan faktor pemulusan 0,35) (D 0.35) (F 0.65) Itu tidak akan jauh lebih sederhana dari itu. Seperti yang Anda lihat, semua yang kita butuhkan untuk input data di sini adalah periode permintaan terakhir dan perkiraan periode terbaru. Kami menerapkan faktor pemulusan (pembobotan) ke periode paling akhir dengan permintaan yang sama seperti dalam perhitungan rata-rata bergerak tertimbang. Kami kemudian menerapkan pembobotan yang tersisa (1 dikurangi faktor pemulusan) ke perkiraan periode terbaru. Karena ramalan periode paling baru dibuat berdasarkan perkiraan periode sebelumnya dan perkiraan periode sebelumnya, yang didasarkan pada permintaan untuk periode sebelumnya dan perkiraan untuk periode sebelumnya, yang didasarkan pada permintaan untuk periode sebelumnya Itu dan ramalan untuk periode sebelumnya, yang didasarkan pada periode sebelum itu. Nah, Anda bisa melihat bagaimana semua permintaan periode sebelumnya terwakili dalam perhitungan tanpa benar-benar mundur dan menghitung ulang apapun. Dan itulah yang mendorong popularitas awal eksponensial smoothing. Itu bukan karena melakukan pekerjaan smoothing yang lebih baik daripada rata-rata bergerak tertimbang, karena lebih mudah untuk menghitung dalam program komputer. Dan, karena Anda tidak perlu memikirkan berapa bobot yang harus diberikan pada periode sebelumnya atau berapa banyak periode sebelumnya yang digunakan, seperti yang akan Anda lakukan pada rata-rata pergerakan tertimbang. Dan, karena kedengarannya lebih dingin dari rata-rata bergerak tertimbang. Sebenarnya, dapat dikatakan bahwa rata-rata bergerak tertimbang memberikan fleksibilitas lebih besar karena Anda memiliki kontrol lebih terhadap pembobotan periode sebelumnya. Kenyataannya adalah salah satu dari ini dapat memberikan hasil yang terhormat, jadi mengapa tidak pergi dengan suara lebih mudah dan lebih dingin. Exponential Smoothing di Excel Mari kita lihat bagaimana ini benar-benar terlihat dalam spreadsheet dengan data sebenarnya. Salin Hak Cipta Konten pada InventoryOps dilindungi hak cipta dan tidak tersedia untuk republikasi. Pada Gambar 1A, kita memiliki spreadsheet Excel dengan permintaan 11 minggu, dan perkiraan merapikan secara eksponensial dihitung dari permintaan itu. Ive menggunakan faktor pemulusan 25 (0,25 di sel C1). Sel aktif saat ini adalah Cell M4 yang berisi ramalan untuk minggu 12. Anda bisa lihat di formula bar, rumusnya adalah (L3C1) (L4 (1-C1)). Jadi satu-satunya masukan langsung untuk perhitungan ini adalah permintaan periode sebelumnya (Cell L3), perkiraan periode sebelumnya (Cell L4), dan faktor pemulusan (Cell C1, yang ditunjukkan sebagai referensi sel absolut C1). Saat kita memulai perhitungan penghalusan eksponensial, kita perlu menambahkan nilai ramalan 1 secara manual. Jadi di Cell B4, bukan formula, kami hanya mengetik permintaan dari periode yang sama seperti perkiraan. Di Cell C4 kita memiliki perhitungan smoothing eksponensial 1 kita (B3C1) (B4 (1-C1)). Kita kemudian bisa menyalin Cell C4 dan menempelkannya ke Sel D4 sampai M4 untuk mengisi sisa sel perkiraan kami. Sekarang Anda bisa klik dua kali pada sel perkiraan mana pun untuk melihatnya didasarkan pada ramalan periode sebelumnya dan periode sebelumnya menuntut sel. Jadi setiap perhitungan smoothing eksponensial selanjutnya mewarisi output perhitungan smoothing eksponensial sebelumnya. Thats bagaimana setiap periode sebelumnya permintaan diwakili dalam perhitungan periode terbaru meskipun perhitungan itu tidak secara langsung referensi periode sebelumnya. Jika ingin kemewahan, Anda bisa menggunakan fungsi pendahuluan Excels. Untuk melakukan ini, klik pada Cell M4, lalu pada bar alat pita (Excel 2007 atau 2010) klik tab Rumus, lalu klik Trace Precedents. Ini akan menarik garis konektor ke tingkat pertama preseden, tapi jika Anda terus mengklik Trace Preseden, itu akan menarik garis konektor ke semua periode sebelumnya untuk menunjukkan kepada Anda hubungan yang diwariskan. Sekarang mari kita lihat apa yang dilakukan smoothing eksponensial untuk kita. Gambar 1B menunjukkan bagan garis dari permintaan dan perkiraan kami. Kasus Anda melihat bagaimana perkiraan merapikan secara eksponensial menghilangkan sebagian besar jaggedness (lompatan sekitar) dari permintaan mingguan, namun tetap berhasil mengikuti apa yang tampaknya merupakan tren permintaan yang meningkat. Anda juga akan melihat bahwa garis perkiraan merapikan cenderung lebih rendah dari garis permintaan. Ini dikenal sebagai trend lag dan merupakan efek samping dari proses smoothing. Kapan pun Anda menggunakan smoothing saat tren hadir, ramalan Anda akan tertinggal dari tren. Hal ini berlaku untuk teknik pemulusan. Sebenarnya, jika kami melanjutkan spreadsheet ini dan mulai memasukkan jumlah permintaan yang lebih rendah (membuat tren menurun), Anda akan melihat garis permintaan turun, dan garis tren bergerak di atasnya sebelum mulai mengikuti tren penurunan. Itulah mengapa saya sebelumnya menyebutkan output dari perhitungan smoothing eksponensial yang kita sebut ramalan, masih memerlukan beberapa pekerjaan lagi. Ada lebih banyak peramalan daripada hanya meratakan benjolan permintaan. Kita perlu melakukan penyesuaian tambahan untuk hal-hal seperti tren lag, seasonality, event yang diketahui yang mungkin mempengaruhi permintaan, dll. Tapi semua itu berada di luar cakupan artikel ini. Anda mungkin juga akan mengalami istilah seperti perataan eksponensial ganda dan pemulusan tiga eksponensial. Istilah ini agak menyesatkan karena Anda tidak merapikan permintaan berkali-kali (Anda bisa jika Anda mau, tapi bukan itu masalahnya di sini). Istilah ini mewakili penggunaan smoothing eksponensial pada elemen tambahan ramalan. Jadi dengan pemulusan eksponensial sederhana, Anda merapikan permintaan dasar, namun dengan pemulusan eksponensial ganda, Anda merapikan permintaan dasar ditambah trennya, dan dengan pemulusan tiga eksponensial Anda merapikan permintaan dasar ditambah tren plus musiman. Pertanyaan lain yang paling sering diajukan tentang pemulusan eksponensial adalah dari mana saya mendapatkan faktor pemulusan saya Tidak ada jawaban ajaib di sini, Anda perlu menguji berbagai faktor penghalusan dengan data permintaan Anda untuk melihat hasil terbaik Anda. Ada perhitungan yang bisa mengatur (dan mengubah) faktor smoothing secara otomatis. Ini jatuh di bawah istilah perataan adaptif, tapi Anda harus berhati-hati dengan mereka. Tidak ada jawaban yang sempurna dan Anda seharusnya tidak membabi buta menerapkan perhitungan tanpa pengujian menyeluruh dan mengembangkan pemahaman menyeluruh tentang perhitungan yang dilakukannya. Anda juga harus menjalankan skenario apa-jika melihat bagaimana perhitungan ini bereaksi terhadap permintaan perubahan yang mungkin saat ini tidak ada dalam data permintaan yang Anda gunakan untuk pengujian. Contoh data yang saya gunakan sebelumnya adalah contoh yang sangat bagus dari situasi di mana Anda benar-benar perlu menguji beberapa skenario lainnya. Contoh data tertentu menunjukkan kecenderungan kenaikan yang agak konsisten. Banyak perusahaan besar dengan perangkat lunak peramalan yang sangat mahal mendapat masalah besar dalam masa lalu yang tidak begitu jauh ketika pengaturan perangkat lunak mereka yang di-tweak untuk ekonomi yang sedang tumbuh tidak akan membaik saat ekonomi mulai stagnan atau menyusut. Hal seperti ini terjadi saat Anda tidak mengerti apa perhitungan (software) Anda sebenarnya. Jika mereka memahami sistem peramalan mereka, mereka pasti tahu bahwa mereka perlu terjun dan mengubah sesuatu saat terjadi perubahan dramatis mendadak pada bisnis mereka. Jadi begitulah dasar-dasar smoothing eksponensial dijelaskan. Ingin tahu lebih banyak tentang penggunaan smoothing eksponensial dalam perkiraan yang sebenarnya, lihat buku saya yang Dijelaskan Manajemen Inventaris. Salin Hak Cipta Konten pada InventoryOps dilindungi hak cipta dan tidak tersedia untuk republikasi. Dave Piasecki. Adalah owneroperator dari Inventory Operations Consulting LLC. Sebuah perusahaan konsultan yang menyediakan layanan yang berkaitan dengan manajemen persediaan, penanganan material, dan operasi gudang. Dia memiliki pengalaman lebih dari 25 tahun dalam manajemen operasi dan dapat dijangkau melalui situs webnya (inventaris), di mana dia menyimpan informasi tambahan yang relevan. Urusanku
Comments
Post a Comment