Exponential moving average stata


Stata: Analisis Data dan Perangkat Lunak Statistik Nicholas J. Cox, Universitas Durham, Inggris Christopher Baum, Boston College egen, ma () dan keterbatasannya Statarsquos perintah yang paling jelas untuk menghitung moving averages adalah fungsi ma () egen. Dengan ekspresi, itu menciptakan rata-rata pergerakkan rata-rata ekspresi itu. Secara default, diambil sebagai 3. pasti aneh. Namun, seperti yang ditunjukkan oleh manual entry, egen, ma () mungkin tidak digabungkan dengan varlist:. Dan, untuk alasan itu saja, itu tidak berlaku untuk data panel. Bagaimanapun, itu berdiri di luar serangkaian perintah yang secara khusus ditulis untuk seri waktu melihat deret waktu untuk rinciannya. Pendekatan alternatif Untuk menghitung rata-rata bergerak untuk data panel, setidaknya ada dua pilihan. Keduanya bergantung pada dataset yang sebelumnya sudah tsset. Ini sangat layak dilakukan: Anda tidak hanya bisa menyelamatkan diri Anda berulang kali menentukan variabel panel dan variabel waktu, namun Stata berperilaku dengan cerdas mengingat adanya kesenjangan dalam data. 1. Tulis definisi Anda sendiri dengan menggunakan Menggunakan operator time-series seperti L. dan F.. Berikan definisi rata-rata bergerak sebagai argumen untuk menghasilkan pernyataan. Jika Anda melakukan ini, Anda tentu saja tidak terbatas pada rata-rata bergerak rata tertimbang (tak tertimbang) yang dihitung oleh egen, ma (). Misalnya, rata-rata bergerak tiga periode tertimbang rata-rata akan diberikan oleh dan beberapa bobot dapat dengan mudah ditentukan: Anda tentu saja dapat menentukan ekspresi seperti log (myvar), bukan nama variabel seperti myvar. Salah satu keuntungan besar dari pendekatan ini adalah bahwa Stata secara otomatis melakukan hal yang benar untuk data panel: nilai-nilai terdepan dan tertinggal ada di dalam panel, seperti logika yang menentukannya. Kelemahan yang paling menonjol adalah bahwa command line bisa agak lama jika moving average melibatkan beberapa istilah. Contoh lainnya adalah moving average satu sisi yang hanya berdasarkan nilai sebelumnya. Ini bisa berguna untuk menghasilkan harapan adaptif tentang variabel apa yang akan didasarkan semata-mata berdasarkan informasi sampai saat ini: perkiraan seseorang terhadap periode saat ini berdasarkan empat nilai terakhir, dengan menggunakan skema bobot tetap (A 4-period lag mungkin Terutama yang biasa digunakan dengan kuartalan kuartalan.) 2. Gunakan egen, filter () dari SSC Gunakan filter fungsi egen yang ditulis pengguna () dari paket egenmore pada SSC. Di Stata 7 (diperbarui setelah 14 November 2001), Anda dapat menginstal paket ini setelah beberapa menit kemudian membantu menjelaskan rincian tentang filter (). Dua contoh di atas akan diberikan (Dalam perbandingan ini, pendekatan menghasilkan mungkin lebih transparan, tapi kita akan melihat contoh yang berlawanan dalam sekejap.) Kelemahannya adalah numlist. Mengarah ke kelambatan yang negatif: dalam kasus ini -11 mengembang menjadi -1 0 1 atau memimpin 1, lag 0, lag 1. Fibre coef, numlist lainnya, perbanyak item tertinggal atau barang yang sesuai: dalam hal ini item tersebut adalah F1.myvar . Myvar dan L1.myvar. Efek dari pilihan normalisasi adalah untuk mengukur setiap koefisien dengan jumlah koefisien sehingga coef (1 1 1) menormalkan setara dengan koefisien 13 13 13 dan coef (1 2 1) normalisasi sama dengan koefisien 14 12 14 Anda harus menentukan tidak hanya kelambatan tapi juga koefisiennya. Karena egen, ma () menyediakan kasus yang sama berbobot, alasan utama untuk egen, filter () adalah untuk mendukung kasus bobot yang tidak sama, yang mana Anda harus menentukan koefisiennya. Bisa juga dikatakan bahwa mewajibkan pengguna untuk menentukan koefisien adalah sedikit tekanan tambahan pada mereka untuk memikirkan koefisien apa yang mereka inginkan. Pembenaran utama untuk bobot yang sama adalah, kami kira, kesederhanaan, namun bobot yang sama memiliki sifat domain frekuensi yang buruk, untuk menyebutkan hanya satu pertimbangan. Contoh ketiga di atas bisa jadi salah satunya sama rumitnya dengan pendekatan menghasilkan. Ada kasus di mana egen, filter () memberikan formulasi yang lebih sederhana daripada menghasilkan. Jika Anda ingin filter binomial sembilan-istilah, yang menurut para ahli iklim berguna, maka mungkin terlihat kurang mengerikan daripada, dan lebih mudah untuk mendapatkan yang benar daripada, Sama seperti dengan pendekatan menghasilkan, egen, filter () bekerja dengan baik dengan data panel. Sebenarnya, seperti yang dinyatakan di atas, ini tergantung pada dataset yang sebelumnya telah di-download. Tip grafis Setelah menghitung rata-rata bergerak Anda, Anda mungkin ingin melihat grafik. Perintah yang ditulis pengguna tsgraph cerdas tentang dataset tsset. Instal di Stata 7 yang up-to-date oleh ssc inst tsgraph. Bagaimana dengan subsetting dengan jika None dari contoh di atas menggunakan jika pembatasan. Sebenarnya egen, ma () tidak akan mengizinkan jika ditentukan. Terkadang orang ingin menggunakan jika saat menghitung moving averages, namun penggunaannya sedikit lebih rumit dari biasanya. Apa yang akan Anda harapkan dari sebuah moving average yang dihitung dengan if. Mari kita kenali dua kemungkinan: Penafsiran yang lemah: Saya tidak ingin melihat hasil apapun untuk pengamatan yang dikecualikan. Interpretasi yang kuat: Saya bahkan tidak ingin Anda menggunakan nilai untuk pengamatan yang dikecualikan. Inilah contoh konkretnya. Misalkan sebagai konsekuensi dari beberapa jika kondisi, pengamatan 1-42 dimasukkan tetapi tidak diobservasi. Tapi rata-rata bergerak untuk 42 akan bergantung, antara lain, pada nilai untuk pengamatan 43 jika rata-rata melebar ke belakang dan ke depan dan panjangnya minimal 3, dan juga akan bergantung pada beberapa pengamatan dan seterusnya dalam beberapa situasi. Dugaan kami adalah kebanyakan orang akan mengikuti interpretasi yang lemah, tapi apakah itu benar, egen, filter () tidak mendukung jika keduanya. Anda selalu bisa mengabaikan apa yang tidak Anda inginkan atau bahkan menetapkan nilai yang tidak diinginkan hilang setelahnya dengan menggunakan ganti. Catatan tentang hasil yang hilang pada ujung seri Karena rata-rata bergerak adalah fungsi lag dan lead, egen, ma () menghasilkan missing dimana lag dan lead tidak ada, pada awal dan akhir rangkaian. Pilihan nomiss memaksa perhitungan rata-rata bergerak pendek yang tidak dipalsukan untuk ekornya. Sebaliknya, tidak menghasilkan atau egen, filter () tidak, atau memungkinkan, sesuatu yang istimewa untuk menghindari hasil yang hilang. Jika salah satu nilai yang dibutuhkan untuk perhitungan hilang, maka hasilnya hilang. Terserah kepada pengguna untuk memutuskan apakah operasi pembedahan diperlukan untuk observasi semacam itu, mungkin setelah melihat dataset dan mempertimbangkan sains dasar yang dapat dibawa untuk melahirkan. Model rata-rata dan pemulusan eksponensial yang merata Sebagai langkah pertama dalam bergerak melampaui mean Model, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasikan dengan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat smoothing (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata - rata yang paling sederhana adalah. Simple Moving Average: Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk memperoleh kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia menggunakan banyak kuotimasi dalam Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang tampak lebih halus: Rata-rata pergerakan sederhana 5 langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata bergerak sederhana 9-istilah, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, rata-rata usia meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata pergerakan 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam prakiraan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, ketika 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linear konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi smoothing eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Bisa diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi paling baik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, perataan eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi naluriah kuotriotipnya. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Hal ini dimungkinkan untuk menghitung interval kepercayaan sekitar perkiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. Metode Time Series Metode time series adalah teknik statistik yang memanfaatkan akumulasi data historis selama periode waktu tertentu. Metode time series mengasumsikan bahwa apa yang telah terjadi di masa lalu akan terus terjadi di masa depan. Seperti yang ditunjukkan oleh deret waktu, metode ini menghubungkan perkiraan hanya dengan satu faktor waktu. Mereka termasuk rata-rata bergerak, eksponensial smoothing, dan garis tren linier dan mereka adalah salah satu metode yang paling populer untuk peramalan jangka pendek di antara perusahaan jasa dan manufaktur. Metode ini mengasumsikan bahwa pola historis atau tren permintaan yang dapat diidentifikasi dari waktu ke waktu akan berulang. Moving Average Sebuah perkiraan deret waktu dapat sesederhana dengan menggunakan permintaan pada periode saat ini untuk memprediksi permintaan pada periode berikutnya. Ini kadang disebut ramalan naif atau intuitif. 4 Misalnya, jika permintaan 100 unit minggu ini, perkiraan permintaan minggu depan adalah 100 unit jika permintaan berubah menjadi 90 unit, maka permintaan minggu berikut adalah 90 unit, dan seterusnya. Metode peramalan jenis ini tidak memperhitungkan perilaku permintaan historis yang hanya bergantung pada permintaan pada periode berjalan. Ini bereaksi langsung terhadap pergerakan acak yang normal. Metode rata-rata bergerak sederhana menggunakan beberapa nilai permintaan selama masa lalu untuk mengembangkan perkiraan. Hal ini cenderung mereda, atau kelancaran keluar, peningkatan acak dan penurunan ramalan yang hanya menggunakan satu periode. Rata-rata pergerakan sederhana berguna untuk meramalkan permintaan yang stabil dan tidak menampilkan perilaku permintaan yang menonjol, seperti tren atau pola musiman. Moving averages dihitung untuk periode tertentu, seperti tiga bulan atau lima bulan, tergantung pada seberapa banyak keinginan peramal untuk memperlancar data permintaan. Semakin lama periode rata-rata bergerak, semakin halus jadinya. Rumus untuk menghitung rata-rata pergerakan sederhana adalah Computing a Simple Moving Average Perusahaan Klip Kertas Klip Instan yang menjual dan menjual perlengkapan kantor ke perusahaan, sekolah, dan agensi dalam radius 50 mil dari gudangnya. Bisnis penyediaan kantor sangat kompetitif, dan kemampuan untuk menyampaikan pesanan segera merupakan faktor dalam mendapatkan pelanggan baru dan mempertahankan bisnis lama. (Kantor biasanya memesan tidak ketika mereka kehabisan persediaan, tapi ketika mereka benar-benar kehabisan. Akibatnya, mereka memerlukan pesanan mereka segera.) Manajer perusahaan ingin cukup yakin bahwa pengemudi dan kendaraan tersedia untuk segera mengirimkan pesanan dan Mereka memiliki persediaan yang memadai. Oleh karena itu, manajer ingin meramalkan jumlah pesanan yang akan terjadi selama bulan depan (yaitu untuk meramalkan permintaan pengiriman). Dari catatan pesanan pengiriman, manajemen telah mengumpulkan data berikut selama 10 bulan terakhir, dari mana ia ingin menghitung rata-rata bergerak 3- dan 5 bulan. Mari kita asumsikan bahwa itu adalah akhir Oktober. Perkiraan yang dihasilkan dari rata-rata pergerakan rata-rata 3 atau 5 bulan biasanya untuk bulan berikutnya dalam urutan, yang dalam kasus ini adalah bulan November. Rata-rata bergerak dihitung dari permintaan pesanan untuk 3 bulan sebelumnya dalam urutan sesuai dengan rumus berikut: Rerata moving average 5 bulan dihitung dari data permintaan 5 bulan sebelumnya sebagai berikut: 3- dan 5 bulan Perkiraan rata-rata bergerak untuk semua data permintaan bulan ditunjukkan pada tabel berikut. Sebenarnya hanya perkiraan untuk bulan November berdasarkan permintaan bulanan terbaru yang akan digunakan oleh manajer. Namun, prakiraan sebelumnya untuk bulan-bulan sebelumnya memungkinkan kita membandingkan perkiraan dengan permintaan aktual untuk melihat seberapa akurat metode peramalan - yaitu, seberapa baik kinerjanya. Rata-rata Tiga dan Lima Bulan Perkiraan rata-rata bergerak dalam tabel di atas cenderung memperlancar variabilitas yang terjadi pada data aktual. Efek perataan ini dapat diamati pada gambar berikut di mana rata-rata 3 bulan dan 5 bulan telah ditumpangkan pada grafik data asli: Rata-rata pergerakan 5 bulan pada gambar sebelumnya menghaluskan fluktuasi ke tingkat yang lebih tinggi daripada Rata-rata pergerakan 3 bulan. Namun, rata-rata 3 bulan lebih dekat mencerminkan data terbaru yang tersedia bagi manajer pasokan kantor. Secara umum, prakiraan menggunakan moving average jangka panjang lebih lambat untuk bereaksi terhadap perubahan permintaan terakhir daripada yang dilakukan dengan menggunakan rata-rata bergerak jangka pendek. Periode ekstra data mengurangi kecepatan perkiraan ramalan. Menetapkan jumlah periode yang tepat untuk digunakan dalam perkiraan rata-rata bergerak seringkali memerlukan sejumlah eksperimentasi coba-coba. Kerugian dari metode rata-rata bergerak adalah tidak bereaksi terhadap variasi yang terjadi karena suatu alasan, seperti siklus dan efek musiman. Faktor yang menyebabkan perubahan umumnya diabaikan. Ini pada dasarnya adalah metode mekanis, yang mencerminkan data historis secara konsisten. Namun, metode moving average memang memiliki keunggulan karena mudah digunakan, cepat, dan relatif murah. Secara umum, metode ini bisa memberikan ramalan yang bagus untuk jangka pendek, tapi seharusnya tidak didorong terlalu jauh ke masa depan. Weighted Moving Average Metode moving average dapat disesuaikan untuk lebih dekat mencerminkan fluktuasi data. Dengan metode rata-rata bergerak tertimbang, bobot ditetapkan ke data terbaru sesuai dengan rumus berikut: Data permintaan untuk Layanan Komputer PM (ditunjukkan pada tabel untuk Contoh 10.3) nampak mengikuti tren linier yang meningkat. Perusahaan ingin menghitung garis tren linier untuk melihat apakah lebih akurat daripada eksponensial smoothing eksponensial dan perkiraan eksponensial yang dikembangkan pada Contoh 10.3 dan 10.4. Nilai yang dibutuhkan untuk perhitungan kuadrat terkecil adalah sebagai berikut: Dengan menggunakan nilai-nilai ini, parameter untuk garis tren linier dihitung sebagai berikut: Oleh karena itu, persamaan garis linier linier adalah menghitung ramalan untuk periode 13, misalkan x 13 pada linier Garis tren: Grafik berikut menunjukkan garis tren linier dibandingkan dengan data aktual. Garis tren tampaknya mencerminkan secara cermat data aktual - yaitu, menjadi sesuai - dan dengan demikian akan menjadi model perkiraan yang baik untuk masalah ini. Namun, kelemahan garis tren linier adalah bahwa ia tidak akan menyesuaikan diri dengan perubahan tren, karena metode ramalan eksponensial eksponensial akan berlanjut, diasumsikan bahwa semua perkiraan masa depan akan mengikuti garis lurus. Ini membatasi penggunaan metode ini ke kerangka waktu yang lebih singkat di mana Anda dapat yakin bahwa tren tidak akan berubah. Penyesuaian Musiman Pola musiman adalah peningkatan berulang dan penurunan permintaan. Banyak item permintaan menunjukkan perilaku musiman. Penjualan pakaian mengikuti pola musiman tahunan, dengan permintaan akan pakaian hangat meningkat di musim gugur dan musim dingin dan menurun pada musim semi dan musim panas karena permintaan akan pakaian dingin meningkat. Permintaan untuk banyak barang ritel, termasuk mainan, peralatan olah raga, pakaian, peralatan elektronik, ham, kalkun, anggur, dan buah, meningkat selama musim liburan. Permintaan kartu ucapan meningkat bersamaan dengan hari-hari istimewa seperti Hari Kasih Sayang dan Hari Ibu. Pola musiman juga bisa terjadi setiap bulan, mingguan, atau bahkan setiap hari. Beberapa restoran memiliki permintaan lebih tinggi di malam hari daripada makan siang atau pada akhir pekan dibandingkan dengan hari kerja. Lalu lintas - maka penjualan - di pusat perbelanjaan mengambil pada hari Jumat dan Sabtu. Ada beberapa metode untuk mencerminkan pola musiman dalam perkiraan deret waktu. Kami akan menjelaskan salah satu metode sederhana menggunakan faktor musiman. Faktor musiman adalah nilai numerik yang dikalikan dengan perkiraan normal untuk mendapatkan perkiraan musiman yang disesuaikan. Salah satu metode untuk mengembangkan permintaan faktor musiman adalah membagi permintaan untuk setiap periode musiman dengan total permintaan tahunan, sesuai dengan rumus berikut: Faktor musiman yang dihasilkan antara 0 dan 1.0, pada dasarnya, merupakan bagian dari total permintaan tahunan yang ditugaskan pada Setiap musim Faktor musiman ini dikalikan dengan permintaan tahunan yang diperkirakan untuk menghasilkan perkiraan yang disesuaikan untuk setiap musim. Menghitung Prakiraan dengan Penyesuaian Musiman Peternakan Wishbone menanam kalkun untuk dijual ke perusahaan pengolahan daging sepanjang tahun. Namun, peak season-nya jelas pada kuartal keempat tahun ini, dari Oktober hingga Desember. Wishbone Farms telah mengalami permintaan untuk kalkun selama tiga tahun terakhir yang ditunjukkan pada tabel berikut: Karena kita memiliki data permintaan tiga tahun, kita dapat menghitung faktor musiman dengan membagi permintaan triwulanan selama tiga tahun dengan total permintaan sepanjang tiga tahun : Selanjutnya, kita ingin melipatgandakan perkiraan permintaan untuk tahun depan, 2000, oleh masing-masing faktor musiman untuk mendapatkan perkiraan permintaan untuk setiap kuartal. Untuk mencapai hal ini, kita memerlukan perkiraan permintaan untuk tahun 2000. Dalam kasus ini, karena data permintaan dalam tabel tampaknya menunjukkan tren yang meningkat secara umum, kita menghitung garis tren linier selama tiga tahun data dalam tabel untuk mendapatkan nilai kasar Perkiraan perkiraan: Dengan demikian, perkiraan untuk tahun 2000 adalah 58,17, atau 58.170 kalkun. Dengan menggunakan perkiraan permintaan tahunan ini, perkiraan musiman yang disesuaikan, SF i, untuk tahun 2000 adalah Membandingkan perkiraan kuartalan ini dengan nilai permintaan aktual dalam tabel, perkiraan perkiraan perkiraan mereka relatif baik, yang mencerminkan variasi musiman dalam data dan Tren kenaikan umum. 10-12. Bagaimana metode moving average mirip dengan smoothing eksponensial 10-13. Apa efek pada model smoothing eksponensial yang akan meningkatkan konstanta smoothing memiliki 10-14. Bagaimana cara menyesuaikan eksponensial smoothing berbeda dari smoothing eksponensial 10-15. Apa yang menentukan pilihan konstanta pemulusan untuk tren dalam model pemulusan eksponensial yang disesuaikan 10-16. Dalam contoh bab untuk metode time series, perkiraan awal selalu diasumsikan sama dengan permintaan aktual pada periode pertama. Sarankan cara lain agar ramalan awal bisa digunakan secara aktual. 10-17. Bagaimana model peramalan linier linier berbeda dari model regresi linier untuk peramalan 10-18. Dari model deret waktu yang disajikan dalam bab ini, termasuk rata-rata bergerak dan rata-rata bergerak tertimbang, pemulusan eksponensial dan pemulusan eksponensial yang disesuaikan, dan garis tren linier, mana yang menurut Anda paling baik Mengapa 10-19. Keuntungan apa yang disesuaikan dengan eksponensial smoothing memiliki garis linier linier untuk perkiraan permintaan yang menunjukkan tren 4 K. B. Kahn dan J. T. Mentzer, Peramalan Pasar Konsumen dan Industri, Journal of Business Forecasting 14, no. 2 (Musim panas 1995): 21-28.

Comments